
Letter to the editor

Comments on the ``Finite Element Solution of the Stability Problem for Nonlinear Undamped and
Damped Systems Under Nonconservative Loading'', Int. J. Solids Structures Vol. 34, No. 19, pp.
2497±2516 (1997) by R.V. Vitaliani, A.M. Gasparini and A.V. Saetta

The paper by Vitaliani et al. (1997) provides means to analyze nonlinear behavior and in®nitesimal
stability of structures which can be modeled as an assemblages of 3-D elastic beams. The presented
®nite element formulation allows to calculate the eigenvalues of loaded structure, thus de®ning the
critical value of the load. Since the considered problems are intended to serve as the benchmark tests,
the veri®cation of the results by methods other than the ®nite element is desirable.

This writer has checked analytically the load-displacement diagrams for problems B5, B13, and B18,
presented by Vitaliani et al. (1997). Since the authors use the displacement approximation from Surana
and Sorem (1989), one numerical example from this paper was also veri®ed analytically.

The analytical solutions presented here are based on the well known governing equations for the
geometrically nonlinear plane deformation of an inextentional curved beam with the constant initial
curvature [see, e.g., Love (1944), Chernykh (1986), Detinko (1998)]

Q 0 � g 0N � 0, N 0 ÿ g 0Q � 0, Q �M 0, M � ÿb 0, b � gÿ j �1a-e�
Here b is the rotation angle, Q, N are the shear and tension-compression stress resultants forces and

M is the bending moment. The equations (1) are written in the distorted coordinate system (n, t ) and
are appropriate for describing deformations under nonconservative terminal forces which remain normal
(Q-direction) or tangential (N-direction) to the beam deformed center line. All forces are dimensionless
and are related to the physical forces (Fn, Ft, My ) by

�Q, N � �
ÿ
R2=EI

�
�Fn, Ft�, M � �R=EI �My �2�

A prime denotes the derivative with respect to the dimensionless coordinate j=s/R. The (x,z )
components of displacement are found from

u 0x � sin gÿ sin j, u 0z � cos gÿ cos j �3�

and the (n,t ) components from

w � ux cos gÿ uz sin g, v � ux sin g� uz cos g �4�
Expressing the shear force in (1b) in terms of g and integrating the resulting relations one obtains

N � Cÿ F2=2, F � g 0 �5�

where C is an integration constant. Combining this with (1a) yields
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F 00 ÿ CF� 1
2F

3 � 0 �6�
Thus, all variables are expressed in terms of the curvature. For the straight beam one should set j=0

in (1e) and (3), and replace the independent variable by x=s/L.

1. Numerical example 1 in Surana and Sorem (1989). The cantilever beam loaded by a concentrated end
moment M0 was analyzed using four three node elements. In this case of pure bending the exact
solution is given by

M �M0 � constant, b � ÿM0x, Q � N � 0 �7�
with x=0 at the ®xed end. From (3) the displacements are

ux�x� � ÿ
�x
0

sin�M0x� dx � cos�M0x� ÿ 1

M0

uz�x� �
�x
0

�
cos�M0x� ÿ 1

�
dx � sin�M0x�

M0
ÿ x

The beam is bent into an arc of a circle (or into a complete circle for M0r2p ) tangent to the initial
center line, so that after the deformations all points are located on the same side of the undeformed
center line. To obtain the numerical values (dx, dy) given in Table 1 of Surana and Sorem (1989), our
dimensionless displacements were multiplied by the beam length L=12 in. or dx=Luz (1), dy=Lux
(1). Comparison of the exact and ®nite element results is presented in Table 1 (all variables are
multiplied by ÿ1).

For the highest load the inaccuracy of the ®nite element results reaches 13% for the rotation, 8%
for the horizontal displacement, and 30% for the vertical displacement (the sign of this relatively low
displacement is wrong). Probably the number of elements for this load was not su�cient.

2. Problem B5 of Vitaliani et al. (1997). For the cantilever beam under follower normal force the
solution of (6) is taken as

ÿM � F �M0
sn�hx�
dn�hx� , Q �M 0 � ÿhM0

cn�hx�
dn2�hx� �8�

where sn(x,k ), cn(x,k ), dn(x,k ) are Jacoby elliptic functions of modulus k. Substituting (8) into (6)
and using relationships

sn2�x� � cn2�x� � 1, dn2�x� � k2sn2�x� � 1

Table 1

Cantilever beam under concentrated moment

Surana and Sorem (1989) Exact

M0/p b dx dy b dx dy

0.2 0.6376 0.7652 3.623 0.6283 0.7741 3.648

0.6 1.925 5.955 8.328 1.885 5.945 8.334

1.0 3.259 12.22 7.507 3.142 12.00 7.639

1.4 4.700 14.66 2.877 4.398 14.59 3.572

1.8 6.397 12.18 ÿ0.1232 5.655 13.25 0.4053
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to express all members in terms of sn(x ) one ®nds

C � �2k2 ÿ 1�h2, M2
0 � 4k2�1ÿ k2 �h2 �9�

At the loaded end (x = 0) (8) satis®es the boundary condition M(0)=0. Conditions N(0)=0,
Q(0)=ÿQ0 yield k 2=1/2, h 2=Q0. The rotation

b�x� �
�1
x

M�x� dx � 2 arc tan�cnh� ÿ 2 arc tan�cnhx�

and the displacements are obtained by a numerical integration:

ux�x� �
�x
1

sin b dx, uz�x� �
�x
1

�cos bÿ 1� dx

To calculate the Jacoby functions we used their representation as an in®nite trigonometric product,
Gradstein and Ryzhic (1980).

The numerical results are presented in Table 2 (here and below R, V, H stand for the rotation and
the dimensionless vertical and horizontal displacements):

By estimation from Fig. 2 of Vitaliani et al. (1997) for the load P = 120 kN the rotation is
0.39p=1.22 and from Table 1 the dimensionless displacements are ÿ0.406, 0.652 with an error only
5%.

Problem B13 (Circular arch under normal follower force)
Substituting the assumed solution

F � F0
sn�hj� t�
dn�hj� t� ,

into (6) one ®nds

C � �2k2 ÿ 1�h2, F2
0 � 4k2�1ÿ k2�h2

The boundary conditions at the loaded end

M�0� � 1ÿ F�0� � 0, N�0� � Cÿ F2�0�=2 � 0, Q�0� � ÿF 0�0� � ÿQ0

yield three equations

Table 2

Cantilever beam under follower normal force

P, kN R V H

0.7 0.1000 0.0666 0.00266

3.5 0.4959 0.3206 0.0644

14 1.776 0.7862 0.6573

56 3.099 0.4212 0.9090

84 2.444 0.1587 0.5652

120 1.162 ÿ0.4042 0.6490

130 0.8522 ÿ0.4786 0.7586
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F0snt � dnt, 2�2k2 ÿ 1�h2 � 1, hF0cnt � Q0 dn2t

from which after some manipulations one ®nds

h2 � Q0, k
2 � 2Q0 � 1

4Q0
, sn2t � 2

1� 2Q0

Using the boundary conditions

b�a� � ux�a� � uz�a� � 0, b�a� � ux�a� � uy�a� � 0, b�a� � ux�a� � uy�a� � 0,

(where a is the arch subtended angle), the rotation and displacements are found by a numerical
integration, as before. From the requirement k 2 < 1 it follows that this solution is valid for Q0 < 1/2.
Otherwise the solution is

F � F0dnÿ1�hj� t�, F2
0 � dn2t � 1ÿ 2Q0, k

2 � 4Q0

2Q0 � 1
, h2 � �1� 2Q0�=4

Table 3 lists the numerical results.
The horizontal displacement from Table 2 of Vitaliani et al. (1997) is equal to the exact value, but

small vertical motion di�ers by 26%.

Problem B18 (Right angled frame under follower force). For this problem the authors remark that ``The
results obtained . . .di�er substantially from those published by Argyris and Symeondis (1981a)''. There
is a simple way to verify the starting portion of the load-displacement curve: for small displacements the
results can be calculated by the linear approximation. For small displacements one easily obtains the
rotation and displacements under the load P=1 kN:

j � PL2

2EI
� PL2

EI
� 0:090, ux=L � PL2

3EI
� PL2

EI
� 0:080, uz=L � PL2

2EI
� 0:030

First component of the rotation and horizontal displacement is due to bending of the vertical beam,
the second one is caused by the moment PL applied to the end of horizontal beam, which also causes
the downward displacement of the loaded section. The displacement due to compression is negligible.
The obtained deformations are low enough to justify the use of linear solution. By estimation from
Fig. 7 of Vitaliani et al. (1997) for the same load j/p=0.25, ux/L = 0.64. One is inclined to attribute
this huge discrepancy to some typographic error.

The considered examples imply that, for the load near critical, small displacements, calculated by the
developed ®nite element procedure, may di�er substantially from the closed form solution. Otherwise

Table 3

Circular arch under follower normal force

P, kN R V H

0.05 ÿ0.0667 0.0631 0.0544

0.20 ÿ0.2357 0.1861 0.2083

1 ÿ0.5861 0.0102 0.6347

2 ÿ0.2560 ÿ0.8664 0.9182

3 0.5802 ÿ1.664 1.954

4 1.608 ÿ1.213 3.328

5 2.468 ÿ0.1658 3.735
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the results obtained by the two methods are in close agreement.
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